
LangMan 1.2
The package of localization components for Delphi

(support UNICODE)

MN-LANGMAN-05 Copyright © 2012 - Ing. Tomáš Halabala

MANUAL

LangMan 1.2

OBSAHOBSAH
 1 General Information...4

 1.1 Supported versions of Delphi...5
 1.2 Install LangMan components..5

 2 LangMan 1.2 Package Components..8
 2.1 TLangManEngine..8
 2.2 TLangManClient..8
 2.3 TDesignedLexicon..8
 2.4 TProgrammableLexicon...8
 2.5 TLangCombo...9
 2.6 TLangFlagsCombo...9
 2.7 TValuedLabel...9

 3 LangMan Component Package Classes..10
 3.1 TLangManEngine = class (TComponent)...10

 3.1.1 TLangManEngine Methods...10
 3.1.1.1 Function Translate (LangName: TLanguage): TLanguage;................................10
 3.1.1.2 Function GetLanguagesList: TStrings;...10
 3.1.1.3 Function GetLangFilesList: TStrings;...10
 3.1.1.4 Procedure ShowLangEditor;..10
 3.1.1.5 Procedure ShowLangCreator;..10

 3.1.2 TLangManEngine Properties..11
 3.1.2.1 Property CurrentLanguage: String; (read-only)..11
 3.1.2.2 Property DesignLanguageName: TLanguage; ..11
 3.1.2.3 Property DefaultLanguage: TLanguage; ..11
 3.1.2.4 Property LangSubdirectory: String; ...11
 3.1.2.5 Property LangFileExtension: String; ..11
 3.1.2.6 Property LangFileSignature: String; ..11
 3.1.2.7 Property LangCreatorVisible: boolean; ...12
 3.1.2.8 Property LangEditorVisible: boolean; ..12
 3.1.2.9 Property TranslateLangMan: boolean;...12
 3.1.2.10 Property LanguageMenu: TMenuItem; ..12
 3.1.2.11 Property LangMenuFlags: boolean; ..12
 3.1.2.12 Property DesignLangFlag: TPicture; ...12
 3.1.2.13 Property LangResources: TStringList;...12
 3.1.2.14 Property LangFileEncoding: TLFEncoding;..12

 3.1.3 TLangManEngine Events..13
 3.1.3.1 OnChangeLangQuery: TContinueQuery; ..13
 3.1.3.2 OnChangeLanguage: TNotifyEvent; ...13
 3.1.3.3 OnBeforeEdit: TNotifyEvent; ...13
 3.1.3.4 OnAfterEdit: TNotifyEvent; ..13

 3.2 TLangManComponent = class (TComponent)...14
 3.2.1 TLangManComponent Properties..14

 3.2.1.1 Property LangManEngine: TLangManEngine;...14
 3.2.2 TLangManComponent Events..14

 3.2.2.1 OnChangeLanguage: TNotifyEvent;..14
 3.3 TLangManClient = class (TLangManComponent)...15

 3.3.1 TLangManClient Methods...15
 3.3.1.1 Function AddComponent (Component: TComponent; Name: string; Translate:
boolean): Boolean;..15
 3.3.1.2 Procedure RecreateTransStruct;..15
 3.3.1.3 Procedure TranslateComponent(Component: TComponent; Name: string = '');...16

HW & SW Development www.regulace.org 2/29

LangMan 1.2

 3.3.1.4 Procedure Translate;..16
 3.3.2 TLangManClient Properties..16

 3.3.2.1 Property InitAfterCreateForm: boolean;...16
 3.3.2.2 Property TransStringProp: TTranslateStringProperties;.......................................16
 3.3.2.3 Property TransTStringsProp: TTranslateTStringsProperties;...............................16
 3.3.2.4 Property TransStructuredProp: TTranslateStructuredProperties;16
 3.3.2.5 Property TransOtherProp: TTranslateOtherProperties;16
 3.3.2.6 Property TransAdditions: TAdditionSet;..17

 3.4 TLexicon = class (TLangManComponent)...17
 3.5 TDesignedLexicon = class (TLexicon)...17

 3.5.1 TDesignedLexicon Methods...17
 3.5.1.1 Function CreateItem(Text: string): Integer;...17
 3.5.1.2 Function CompleteString(const Str: string): string;...17

 3.5.2 TDesignedLexicon Properties..18
 3.5.2.1 Property Item [Index: Integer]: string; (read-only)...18
 3.5.2.2 Property Items: TStringList;..18
 3.5.2.3 Property Link [Index: Integer]: string; (read-only)...18

 3.6 TProgrammableLexicon = class (TLexicon)..19
 3.6.1 TprogrammableLexicon Methods..19

 3.6.1.1 Procedure DefineItem(ItemNr: Word; Text: string);...19
 3.6.1.2 Function IsDefined(Index: Integer): Boolean;,..19
 3.6.1.3 Function CompleteString(const Str: string): string;...19

 3.6.2 TProgrammableLexicon Properties...19
 3.6.2.1 Property Item [Index: Integer]: string; (read-only)...19
 3.6.2.2 Property Link [Index: Integer]: string; (read-only)...19

 3.6.3 TprogrammableLexicon Events...19
 3.6.3.1 OnInitialization: TNotifyEvent;..19

 3.7 TShadowComboBox = class (TCustomComboBox);.......................................21
 3.8 TLangCombo = class (TShadowComboBox)..21

 3.8.1 TLangCombo Properties...21
 3.8.1.1 Property LangManEngine: TLangManEngine;...21
 3.8.1.2 Property StyleCombo: TLangComboStyle;..21

 3.8.2 TLangCombo Events...21
 3.8.2.1 OnChangeLanguage: TNotifyEvent;..21

 3.9 TShadowComboBoxEx = class (TCustomComboBoxEx);...............................22
 3.10 TLangFlagsCombo = class (TShadowComboBoxEx)....................................22

 3.10.1 TLangFlagsCombo Properties...22
 3.10.1.1 Property LangManEngine: TLangManEngine;...22

 3.10.2 TLangFlagsCombo Events...22
 3.10.2.1 OnChangeLanguage: TNotifyEvent;..22

 3.11 TValuedLabel = class (TCustomLabel)...23
 3.11.1 TValuedLabel Properties...23

 3.11.1.1 Property Value: TCaption;..23
 3.11.1.2 Property ValueName: TCaption;...23
 3.11.1.3 Property ValueSeparator : string;...23
 3.11.1.4 Property ValueSpaces : byte;...23

 3.12 TLangManStrings = class (TStringList)...24
 3.12.1 TLangManStrings Constructor...24

 3.12.1.1 Constructor Create(ControlledStrings: TStrings; Lexicon: TLexicon);................24
 3.12.2 TLangManStrings Methods...24

 3.12.2.1 Procedure Translate;..24
 4 Language files as application resources ...25
 5 Dynamic generating of texts ..26

HW & SW Development www.regulace.org 3/29

LangMan 1.2

 1 1 General InformationGeneral Information
LangMan component package is used for a very easy creating of multilingual
applications in Delphi. These components virtually relieve you from all the
troubles with programming of translations, switching languages, and it
maintains the full visibility of the source code. Unlike other competing
solutions LangMan is a totally unique and invaluable tool.
You will create the application in any original language, regardless of the
need for future translation into other languages. Only in case of strings
assigned at runtime of the program, it is necessary to refer to the lexicons
that are a part of this component series. When designing forms it is also
useful to attend to variable length of strings. Everything else is fully
automatic, and therefore LangMan saves a great deal of time when creating
multilingual applications.
The final language files can be distributed either simultaneously with the
application, but also separately. In this way languages can be easily repaired
or added directly into the user's target application. Another advantage is the
ability of LangMan to inherit languages, without any depth restriction. One
language can be inherited from another language, and that one from another
language and so on. It is actually highly recommended. The advantage is
that in case of a missing translation of some component, the Slovak version
may stem from the Czech one, or vice versa, the American from the British
one, the Austrian from the German one, etc. It also allows to translate some
languages only partially which, again, saves time.
LangMan itself will automatically create functional links in the selected
language selection menu. For the user language selection, visual component
TLangCombo or TlangFlagsCombo may be inserted into the application. All
this without any strain or difficult setting. A graphic symbol or a flag can be
assigned to particular languages. It will be automatically displayed in the
language selection menu.
LangMan supports UNICODE charset, and it is able to translate into any
language all the standard Delphi components. This also applies to
properties inherited from the standard Delphi components, ie. if the developer
applies for his component a standard Delphi constituent, also inherited
properties of his component will be automatically translated. External or
internal components that do not stem from standard components may be
translated manually in the OnChangeLanguage event by using lexicons, or
an automatic translation of any other components may be easily additionally
programmed in the LMAdditions unit.
If a translation of some properties is not desirable, there are naturally several
ways to disable the translation. First, I would premise, LangMan is intelligent
enough and does not include anything useless into the translation. It
translates only those properties of components, whose translation is in 99%
desirable. Strings not consisting of text are not included into the translation.
Strings identical with the name of the given component are not translated
either. Moreover, the translation of specific properties can be easily disabled
in the settings. Each form can have different settings.

HW & SW Development www.regulace.org 4/29

LangMan 1.2

 1.1 1.1 Supported versions of DelphiSupported versions of Delphi
• Delphi 7

• Delphi 2005

• Delphi 2006

• Delphi 2007

• Delphi 2009

• Delphi 2010

• Delphi XE

• Delphi XE2

 1.2 1.2 Install LangMan componentsInstall LangMan components
After downloading the ZIP package from the Internet you first create a folder
where you extract the source code of the LangMan components.
So I have this folder created for example in the following location:
D:\Delphi\Components\LangMan

Next, open the file LM_Config.inc and clear definitions of the names of
libraries that your edition of Delphi does not. For example, if your Delphi does
not include Rave Reports and database components, you perform the
following changes:

Next, run your Delphi IDE. Then in the File menu, click Open Project. In the
dialog that is diplayed, select and open the file LangMan.dpk.

HW & SW Development www.regulace.org 5/29

LangMan 1.2

Then right click on the project name in Project Manager:

In the context menu, click Compile:

HW & SW Development www.regulace.org 6/29

LangMan 1.2

and finally in the same menu, click Install:

HW & SW Development www.regulace.org 7/29

LangMan 1.2

 2 2 LangMan 1.2LangMan 1.2 Package Components Package Components

 2.1 2.1 TLangManEngineTLangManEngine
The basic building block, further referred to as the engine. It provides
translation, switching between languages, and it manages the language files.
This component is necessary for functioning of all the other language
components, except the TValuedLabel component. In most cases, one
language is common to all the parts of the program, so it is necessary to
place the engine once into the unit (on the form or, rather into the
TDataModule data module), which will be accessible from all the other
forms. In case you need to separate two or more parts of the program
considering the language, for example if you want to choose the program
language and the printout language separately, you can use as many
engines as necessary. Individual engines must differ in LangFileSignature,
LangFileExtension and LangSubdirectory properties settings. A single
difference in some of the given characteristics is sufficient to the distinction.
These characteristics determine the basic parameters of language files that
will belong to given language engine.

 2.2 2.2 TLangManClientTLangManClient
This component, further referred to as the client, serves for installing the
form, on which it is located, into the translation by selected engine. In
addition, it allows you to choose which properties on the form and its
components are supposed to be translated. If it is desired for some
properties to be translated by one engine, and the others by another engine,
it is possible to place more clients on one form and to assign different
engines to them.

 2.3 2.3 TDesignedLexiconTDesignedLexicon
Except to the automatic translation of static components, located on the
forms, strings for dynamically created dialog boxes, notifications, etc. are
often needed in the programs. For this purpose lexicons are used where
necessary strings may be defined. These strings are then automatically
translated, so the particular entry is always read in the appropriate language.
Strings in TDesignedLexicon are defined by using the editor directly in
object inspector.

 2.4 2.4 TProgrammableLexiconTProgrammableLexicon
Programmable lexicon entries can be defined, unlike TDesignedLexicon, in
the program source code, for example in the OnInitialization event method.
This lexicon is applied in cases where the language strings are known only
during the program runtime. A condition for translating is that all items that
are supposed to be translated automatically have to be in the lexicon before
editing the language, otherwise it will not be possible to locate them into
other languages.

HW & SW Development www.regulace.org 8/29

LangMan 1.2

Another function of both lexicon is translating of dynamically generated
extensive texts. Only links to lexicon strings instead of individual strings may
be inserted into these texts during the dynamic creation of the content. This
feature of the lexicon is called Link. By means of CompleteString method it
is possible to transfer the text with links into the currently selected language
at any time.

 2.5 2.5 TLangComboTLangCombo
This is a standard ComboBox, which is after assigning to the engine
automatically filled with existing languages. When selecting a language, all
clients and lexicons will be translated. In case that it is allowed in language
engine to create or edit languages, the selection is extended by these
options.

 2.6 2.6 TLangFlagsComboTLangFlagsCombo
TLangFlagsCombo is an enhanced ComboBox whose items are extended
by language icons and possible options for creating and editing the
languages by the user. Outside of these icons the function and appearance is
identical with TLangCombo.

 2.7 2.7 TValuedLabelTValuedLabel
TValuedLabel is an additional component similar to the standard TLabel. It
has ValueName, ValueSeparator, ValueSpaces and Value properties,
instead of the Caption property. These properties are linked in the final
display, while ValueSpaces indicates the number of spaces instead of
ValueSeparator. The trick is that LangMan translates except Hint only the
ValueName property. It is sufficient to enter only the “Value” value in the
program. The usage is then clear from this description.

HW & SW Development www.regulace.org 9/29

LangMan 1.2

 3 3 LangMan Component Package ClassesLangMan Component Package Classes

 3.1 3.1 TLangManEngine = class (TComponent)TLangManEngine = class (TComponent)
Unit: LangManComp;
The main unit, further referred to as engine. It provides translations, switching
between languages and manages language files.

 3.1.1 3.1.1 TLangManEngine MethodsTLangManEngine Methods

 3.1.1.1 3.1.1.1 Function Translate (LangName: TLanguage): TLanguage;Function Translate (LangName: TLanguage): TLanguage;
This function translates all assigned components into the LangName
language. The transferred parameter is of the type of string and it must
correspond to the name of one of the loaded languages. If the translation is
realized well, an event OnChaneLanguage is called. After the translation,
the function returns the name of the current language.

 3.1.1.2 3.1.1.2 Function GetLanguagesList: TStrings;Function GetLanguagesList: TStrings;
The function returns the list of loaded languages. Items on this list are the
valid languages and can be used as a parameter of function Translate.

 3.1.1.3 3.1.1.3 Function GetLangFilesList: TStrings;Function GetLangFilesList: TStrings;
The function returns the list of language files that are loaded in the engine.
List item indexes correspond to the GetLanguagesList indexes.

 3.1.1.4 3.1.1.4 Procedure ShowLangEditor;Procedure ShowLangEditor;
The procedure initiates a language editor. Languages in it can be only
modified, but not added. A condition for starting the editor is the presence of
at least one language for editing. The default language of the design does
not count.
Note: Language editor is available directly in the language menu (Menu,
Combo), if it is enabled by setting of property LangEditorVisible to true.

 3.1.1.5 3.1.1.5 Procedure ShowLangCreator;Procedure ShowLangCreator;
This procedure initiates the language editor in the mode of adding new
language.
Note: A new language can be added directly from the language menu (Menu,
Combo), if it is enabled by setting of property LangCreatorVisible to true.

HW & SW Development www.regulace.org 10/29

LangMan 1.2

 3.1.2 3.1.2 TLangManEngine PropertiesTLangManEngine Properties

 3.1.2.1 3.1.2.1 Property CurrentLanguage: String; (read-only)Property CurrentLanguage: String; (read-only)
CurrentLanguage property returns the name of the currently selected
language. This property is read-only. Language can be changed using the
function Translate.

 3.1.2.2 3.1.2.2 Property DesignLanguageName: TLanguage; Property DesignLanguageName: TLanguage;
This property is used to set the name of the designing language. It means
that it is the main language that is used in the design of an application. This
language can be used at any time as the default language for the translation.
It is therefore recommended to use the English language when designing an
application, because it is most suitable language for translations into any
other world language.

 3.1.2.3 3.1.2.3 Property DefaultLanguage: TLanguage; Property DefaultLanguage: TLanguage;
The default language that is supposed to be set when starting the
application. Local language or language used in the last application run can
be entered into this property within OnCreate event of the form. The default
language is loaded only at the moment of application activation, ie. when all
forms are created already.

 3.1.2.4 3.1.2.4 Property LangSubdirectory: String; Property LangSubdirectory: String;
The name of a subdirectory for storing the language files. As a default
directory is considered the directory, in which there is located the application
executable file. If this property is equal to an empty string, the language files
will be stored in the same directory.

 3.1.2.5 3.1.2.5 Property LangFileExtension: String; Property LangFileExtension: String;
The extension of language files. In case of a multiple usage of
TLangManEngine component in one application it is necessary to
distinguish language files belonging to this component from the other
language files of other engines. The language files extension is one of the
appropriate options for the distinction.

 3.1.2.6 3.1.2.6 Property LangFileSignature: String; Property LangFileSignature: String;
The identification string of language files belonging to this engine. In case of
a multiple usage of TLangManEngine component in one application it is
necessary to distinguish language files belonging to this component from the
other language files of other engines.The identification string is stored in
language files, and it should distinguish language files belonging to different
engins, and ideally also to different applications.

HW & SW Development www.regulace.org 11/29

LangMan 1.2

 3.1.2.7 3.1.2.7 Property LangCreatorVisible: boolean; Property LangCreatorVisible: boolean;
This property determines whether also the option for creating a new
language should be visible in the language menu.

 3.1.2.8 3.1.2.8 Property LangEditorVisible: boolean; Property LangEditorVisible: boolean;
This property determines whether also the option for editing a language
should be visible in the language menu. This option is not visible in case that
the program only includes the main language of the design and no other.

 3.1.2.9 3.1.2.9 Property TranslateLangMan: boolean;Property TranslateLangMan: boolean;
TranslateLangMan property allows the inclusion of the language editor into
the list of translated components. If the user is not supposed to have the right
to use the language editor, it means in case that the LangEditorVisible and
LangCreatorVisible properties are set to false, there is no reason of the
language editor translating. In this case, keep the property value set to false.
The language editor currently includes three internal languages into which it
can translate itself automatically. These are the Czech, the Slovak and the
English language.

 3.1.2.10 3.1.2.10 Property LanguageMenu: TMenuItem; Property LanguageMenu: TMenuItem;
LanguageMenu property is used for the automatic generation of language
menu. Just assign any component of TMenuItem class from the main menu
or submenu.

 3.1.2.11 3.1.2.11 Property LangMenuFlags: boolean; Property LangMenuFlags: boolean;
This property determines whether the flags (symbols) are supposed to be
displayed in the language menu. This applies only to the menu assigned by
LanguageMenu property.

 3.1.2.12 3.1.2.12 Property DesignLangFlag: TPicture; Property DesignLangFlag: TPicture;
Graphic symbol of the designing language. Ideally, it is the flag of the country
where the language is the official language.

 3.1.2.13 3.1.2.13 Property LangResources: TStringList;Property LangResources: TStringList;
To this property source language file ID names (Resources ID), linked to .exe
files of the application, can be assigned in object inspector. It is therefore
possible by means of this property to install the selected languages firmly into
the application. If the user is allowed to edit the languages, the language file
from resources will be saved to disk before editing.

 3.1.2.14 3.1.2.14 Property LangFileEncoding: TLFEncoding;Property LangFileEncoding: TLFEncoding;
Language files encoding type. The default is Unicode. If you have any
reason for a different type of language files encoding, you can choose from

HW & SW Development www.regulace.org 12/29

LangMan 1.2

the following options:
type TLFEncoding = (Unicode, BigEndianUnicode, UTF8, ANSI);

 3.1.3 3.1.3 TLangManEngine EventsTLangManEngine Events

 3.1.3.1 3.1.3.1 OnChangeLangQuery: TContinueQuery; OnChangeLangQuery: TContinueQuery;
The event called before the language change. If the translation into the
selected language is not desirable, the translation can be stopped by setting
the value false in the Continue return parameter.

 3.1.3.2 3.1.3.2 OnChangeLanguage: TNotifyEvent; OnChangeLanguage: TNotifyEvent;
The event called after the language change.

 3.1.3.3 3.1.3.3 OnBeforeEdit: TNotifyEvent; OnBeforeEdit: TNotifyEvent;
The event called before starting the language editor. When editing a
language it is necessary that in the memory there is recorded the structure of
all elements, that are supposed to be translated by means of the component.
If for example dynamically generated forms or dynamically generated form
components are supposed to be translated, it is necessary to create all these
components and forms in the memory, at least temporarily, so that they could
be translated. The same applies to programmable lexicon items.

 3.1.3.4 3.1.3.4 OnAfterEdit: TNotifyEvent; OnAfterEdit: TNotifyEvent;
After closing the language editor, an event OnAfterEdit is called. In the
method, assigned to this event, components dynamically created only for the
translation can be released from the memory again. Whenever the dynamic
form is created again, it is immediately automatically translated into the
current language. After creating the dynamic component, it is necessary to
call its additional translation manually.

HW & SW Development www.regulace.org 13/29

LangMan 1.2

 3.2 3.2 TLangManComponent = class (TComponent)TLangManComponent = class (TComponent)
Unit: LangManComp;
TlangManComponent class is the basis for all other language components,
such as TLangManClient, TDesignedLexicon and
TProgrammableLexicon.

 3.2.1 3.2.1 TLangManComponent PropertiesTLangManComponent Properties

 3.2.1.1 3.2.1.1 Property LangManEngine: TLangManEngine;Property LangManEngine: TLangManEngine;
To the LangManEngine property TlangManEngine must be assigned. It
provides the current language data to the language component.

 3.2.2 3.2.2 TLangManComponent EventsTLangManComponent Events

 3.2.2.1 3.2.2.1 OnChangeLanguage: TNotifyEvent;OnChangeLanguage: TNotifyEvent;
The event called after the language change.

HW & SW Development www.regulace.org 14/29

LangMan 1.2

 3.3 3.3 TLangManClient = class (TLangManComponent)TLangManClient = class (TLangManComponent)
Unit: LangManComp;
This component, further referred to as the client, serves for installing the form
on which it is located, into the translation by means of selected engine. In
addition, it allows you to select which properties on the form and its
components are supposed to be translated.

 3.3.1 3.3.1 TLangManClient MethodsTLangManClient Methods

 3.3.1.1 3.3.1.1 Function AddComponent (Component: TComponent; Name:Function AddComponent (Component: TComponent; Name:
string; Translate: boolean): Boolean;string; Translate: boolean): Boolean;
If you want also form components that are created dynamically at runtime to
be translated, it is necessary for each such component to be added
additionally into the form component list which is maintained by the
TLangManClient component. A condition for the proper function of automatic
translation is that the form is the owner of such components. In the case of
several identical dynamic components, which are to be translated
consistently, you can use a common name. Then it is sufficient to register the
component only once using the AddComponent function. When re-creating
the same component is not required to re-register it, it is sufficient to use the
same name as during the previous registration. A condition is the identical
name of every dynamically created component that is supposed to be
translated. Functions AddComponent performs the process of naming
instead of you.
The transfer parameter Component must be the added component, in the
parameter Name it is possible to transfer the name of the new component. If
the component already has its unique name assigned in the property
Component.Name, use an empty strings for the parameter Name. The last
parameter Translate determines whether a translation into the current
language is supposed to be done immediately after adding a new
component. For a multiple translation of the entire form the method Translate
can be applied.
For an additional translation of one form component the method
TranslateComponent can be applied.

 3.3.1.2 3.3.1.2 Procedure RecreateTransStruct;Procedure RecreateTransStruct;
This method will rebuild the list structure of the form components. The list
includes all named components, that at the given moment belong to the form,
so this method can be used for mass installing of dynamically created form
components into the list of translated components. After canceling of some
component this method is the only way how to remove the canceled
component from the list of translated components. The presence of non-
existing component in the translation list only affects the presence of this
component in the language editor, which is usually rather desirable.

HW & SW Development www.regulace.org 15/29

LangMan 1.2

 3.3.1.3 3.3.1.3 Procedure TranslateComponent(Component: TComponent;Procedure TranslateComponent(Component: TComponent;
Name: string = '');Name: string = '');
The TranslateComponent method is applied for translation of one
component in the currently selected language. In this process it does not
matter which component is the owner of the component transferred in the
parameter Component. On the other hand, for the automatic translation it is
unconditionally necessary that the form is the owner.
A condition is that the component has its unique name within the frame of the
owner. In the opposite case, it is possible to transfer a new name in the
parameter Name. Otherwise, leave an empty string to the parameter Name.

 3.3.1.4 3.3.1.4 Procedure Translate;Procedure Translate;
It translates the form and all its named components. When changing the
engine language the translation will proceed automatically, but after adding
more dynamically created components, this method can be applied for the
additional multiple translation of all the new named form components.

 3.3.2 3.3.2 TLangManClient PropertiesTLangManClient Properties

 3.3.2.1 3.3.2.1 Property InitAfterCreateForm: boolean;Property InitAfterCreateForm: boolean;
This property determines whether a list of automatically translated form
component is supposed to be created only after the call of the method of the
OnCreate event of the form true, or even before false.

 3.3.2.2 3.3.2.2 Property TransStringProp: TTranslateStringProperties;Property TransStringProp: TTranslateStringProperties;
The set of names of properties of the type of string that are supposed to be
translated.

 3.3.2.3 3.3.2.3 Property TransTStringsProp: TTranslateTStringsProperties;Property TransTStringsProp: TTranslateTStringsProperties;
The set of names of properties of the type of TStrings that are supposed to
be translated.

 3.3.2.4 3.3.2.4 Property TransStructuredProp:Property TransStructuredProp:
TTranslateStructuredProperties; TTranslateStructuredProperties;
The set of names of properties of different types, usually more complex
structures, that are supposed to be translated.

 3.3.2.5 3.3.2.5 Property TransOtherProp: TTranslateOtherProperties; Property TransOtherProp: TTranslateOtherProperties;
The set of names of properties of different types, that are supposed to be
translated. In some cases it may be names of the entire classes.

HW & SW Development www.regulace.org 16/29

LangMan 1.2

 3.3.2.6 3.3.2.6 Property TransAdditions: TAdditionSet;Property TransAdditions: TAdditionSet;
The set of names of user supplements, that are supposed to be translated.

 3.4 3.4 TLexicon = class (TLangManComponent)TLexicon = class (TLangManComponent)
Unit: LangManComp;
The basic class of all lexicons. It provides the linkage of the lexicon with the
engine. Since the 1.1 version TLexicon has defined virtual functions for the
translation of texts containing links to the strings of the lexicon. These links
are generated by another virtual function called GetLink. More about the
function of the translation of texts and links in the description of specific
lexicons.

 3.5 3.5 TDesignedLexicon = class (TLexicon)TDesignedLexicon = class (TLexicon)
Unit: LangManComp;
Except of the automatic translation of static components, located on the
forms, strings for different dynamically generated dialog boxes, messages,
etc. are often necessary in the programs. Lexicons are used for these
purposes. Needed strings can be defined in these lexicons. These strings are
then automatically translated, so the particular entry is always read in the
appropriate language. Strings in TDesignedLexicon are defined by means
of the editor directly in object inspector.

 3.5.1 3.5.1 TDesignedLexicon MethodsTDesignedLexicon Methods

 3.5.1.1 3.5.1.1 Function CreateItem(Text: string): Integer;Function CreateItem(Text: string): Integer;
The function CreateItem is used for adding the string Text into the lexicon at
runtime. The return value is the position (Index) of the new string in the
lexicon.

 3.5.1.2 3.5.1.2 Function CompleteString(const Str: string): string;Function CompleteString(const Str: string): string;
The function CompleteString returns the given string Str, where the links to
lexicon strings are replaced by lexicon strings in the currently selected
language. These links are generated by the lexicon property Link. This
property is applied for translating of dynamically generated extensive texts.
Instead of specific strings in a specific language use only links to specific
lexicon strings while generating the text, and you will transfer the string with
links into a readable form only in the moment of output to the screen, printer,
etc. This function is used also by a new non-visual object of LangMan
package TLangManStrings (see TLangManStrings class description) for
the dynamic translation of objects derived from TStrings. For example
TMemo, TRichEdit etc.

HW & SW Development www.regulace.org 17/29

LangMan 1.2

 3.5.2 3.5.2 TDesignedLexicon PropertiesTDesignedLexicon Properties

 3.5.2.1 3.5.2.1 Property Item [Index: Integer]: string; (read-only)Property Item [Index: Integer]: string; (read-only)
The property Item returns the string from the position Index in the currently
selected language.

 3.5.2.2 3.5.2.2 Property Items: TStringList;Property Items: TStringList;
The property Items is used to edit entries in the lexicon in the object
inspector. It is necessary to insert these strings into the list in the design
language, which corresponds to the DesignLanguageName of the assigned
engine. In the program it is possible to read these strings in the specific
selected languages by means of the property Item.

 3.5.2.3 3.5.2.3 Property Link [Index: Integer]: string; (read-only)Property Link [Index: Integer]: string; (read-only)
The property Link returns a link of the type of string to the lexicon string to
the position Index. A link gained in this way can be inserted into the link text
during a dynamic creating of some statements, logs, etc. By means of the
function CompleteString (see above) you can then transfer the resulting text
with links into a readable form in the currently selected language. More about
using this function you will find also in the non-visual TLangManStrings
object description.

HW & SW Development www.regulace.org 18/29

LangMan 1.2

 3.6 3.6 TProgrammableLexicon = class (TLexicon)TProgrammableLexicon = class (TLexicon)
Unit: LangManComp;
Programmable lexicon items can be defined, unlike TDesignedLexicon, only
in the program source code, for example in the OnInitialization event
method. This lexicon is applied in cases where the language strings are
known only at runtime. A condition for translating is that all items that are
supposed to be translated automatically have to be in the lexicon before
editing the language, otherwise it will not be possible to locate them into
other languages.

 3.6.1 3.6.1 TprogrammableLexicon MethodsTprogrammableLexicon Methods

 3.6.1.1 3.6.1.1 Procedure DefineItem(ItemNr: Word; Text: string);Procedure DefineItem(ItemNr: Word; Text: string);
This method installs the string Text into the lexicon on the ItemNr position. If
there is already a different string on this position, it will be overwritten by a
new string.

 3.6.1.2 3.6.1.2 Function IsDefined(Index: Integer): Boolean;,Function IsDefined(Index: Integer): Boolean;,
The function returns the true if the item on the position Index in the lexicon is
defined. Otherwise it returns false.

 3.6.1.3 3.6.1.3 Function CompleteString(const Str: string): string;Function CompleteString(const Str: string): string;
The importance of this function is the same as in the case of both lexicons.
See the description of CompleteString function of the TDesignedLexicon
lexicon.

 3.6.2 3.6.2 TProgrammableLexicon PropertiesTProgrammableLexicon Properties

 3.6.2.1 3.6.2.1 Property Item [Index: Integer]: string; (read-only)Property Item [Index: Integer]: string; (read-only)
The property Item returns the string from the position Index in the currently
selected language.

 3.6.2.2 3.6.2.2 Property Link [Index: Integer]: string; (read-only)Property Link [Index: Integer]: string; (read-only)
The same as in case of property Link of the TDesignedLexicon lexicon.

 3.6.3 3.6.3 TprogrammableLexicon EventsTprogrammableLexicon Events

 3.6.3.1 3.6.3.1 OnInitialization: TNotifyEvent;OnInitialization: TNotifyEvent;
This event is called when initializing the lexicon. In this event method it is
possible to define lexicon items.

HW & SW Development www.regulace.org 19/29

LangMan 1.2

HW & SW Development www.regulace.org 20/29

LangMan 1.2

 3.7 3.7 TShadowComboBox = class (TCustomComboBox);TShadowComboBox = class (TCustomComboBox);
Unit: LangManSys;
The declaration of shadow class for TCustomComboBox. The significance
lies only in differentiation the TShadowComboBox descendants from the
TCustomComboBox descendants on account of the automatic translation
by means of LangManClient component. The Items items, classes based on
TshadowComboBox, are not translated by LangMan.

 3.8 3.8 TLangCombo = class (TShadowComboBox)TLangCombo = class (TShadowComboBox)
Unit: LangManComp;
This is a standard ComboBox, which is after assigning to the engine
automatically loaded with existing languages. All clients and lexicons will be
translated when selecting a language.

 3.8.1 3.8.1 TLangCombo PropertiesTLangCombo Properties

 3.8.1.1 3.8.1.1 Property LangManEngine: TLangManEngine;Property LangManEngine: TLangManEngine;
To this property TLangManEngine must be assigned. TLangCombo is
linked with it.

 3.8.1.2 3.8.1.2 Property StyleCombo: TLangComboStyle;Property StyleCombo: TLangComboStyle;
This property is analogous to Style ComboBox property. The difference is
that here it is not possible to set the csDropDown style.

 3.8.2 3.8.2 TLangCombo EventsTLangCombo Events

 3.8.2.1 3.8.2.1 OnChangeLanguage: TNotifyEvent;OnChangeLanguage: TNotifyEvent;
The event called after the language change.

HW & SW Development www.regulace.org 21/29

LangMan 1.2

 3.9 3.9 TShadowComboBoxEx = class (TCustomComboBoxEx);TShadowComboBoxEx = class (TCustomComboBoxEx);
Unit: LangManSys;
The declaration of shadow class for TCustomComboBoxEx. The
significance is the same as in case of TShadowComboBox. It serves to
differentiate TShadowComboBoxEx descendants from
TCustomComboBoxEx descendants, on account of the automatic
translation by means of LangManClient component. The Items items,
classes based on TShadowComboBoxEx, are not translated by LangMan.

 3.10 3.10 TLangFlagsCombo = class (TShadowComboBoxEx)TLangFlagsCombo = class (TShadowComboBoxEx)
Unit: LangManComp;
LangFlagsCombo is an enhanced ComboBox that has also relevant flags
(languages icons) displayed in front of the names of languages. The function
is similar to TLangCombo.

 3.10.1 3.10.1 TLangFlagsCombo PropertiesTLangFlagsCombo Properties

 3.10.1.1 3.10.1.1 Property LangManEngine: TLangManEngine;Property LangManEngine: TLangManEngine;
To this property TLangManEngine must be assigned. TLangFlagsCombo is
linked to it.

 3.10.2 3.10.2 TLangFlagsCombo EventsTLangFlagsCombo Events

 3.10.2.1 3.10.2.1 OnChangeLanguage: TNotifyEvent;OnChangeLanguage: TNotifyEvent;
An event called after the language change.

HW & SW Development www.regulace.org 22/29

LangMan 1.2

 3.11 3.11 TValuedLabel = class (TCustomLabel)TValuedLabel = class (TCustomLabel)
Unit: LangManCtrls;
TValuedLabel is an additional component similar to the standard TLabel. It
has ValueName, ValueSeparator, ValueSpaces and Value properties
instead of the Caption property. These properties are linked in the the final
display, while ValueSpaces indicates the number of spaces instead of
ValueSeparator. The trick is that LangMan translates except Hint only the
ValueName property. It is sufficient to enter only the Value value in the
program.

 3.11.1 3.11.1 TValuedLabel PropertiesTValuedLabel Properties

 3.11.1.1 3.11.1.1 Property Value: TCaption;Property Value: TCaption;
Any string can be assigned to this property. The resulting string that is
displayed by the visual component has the following format: 'ValueName' +
'ValueSeparator'+ ValueSpaces x ' ' + 'Value'. Only ValueName property is
translated automatically.

 3.11.1.2 3.11.1.2 Property ValueName: TCaption;Property ValueName: TCaption;
Into the translations only the property is included to which the name of the
Value value in the designing language should be assigned. The resulting
string that is displayed by this visual component has the following format:
'ValueName' + 'ValueSeparator'+ ValueSpaces x ' ' + 'Value'.

 3.11.1.3 3.11.1.3 Property ValueSeparator : string;Property ValueSeparator : string;
Any string can be assigned to this property. The resulting string that is
displayed by the visual component has the following format: 'ValueName' +
'ValueSeparator' + ValueSpaces x ' ' + 'Value'. Only ValueName property is
translated automatically.

 3.11.1.4 3.11.1.4 Property ValueSpaces : byte;Property ValueSpaces : byte;
This property indicates the number of spaces between ValueSeparator and
Value. The resulting string that is displayed by the visual component has the
following format: 'ValueName' + 'ValueSeparator' + ValueSpaces x ' ' +
'Value'. Only ValueName property is translated automatically.

HW & SW Development www.regulace.org 23/29

LangMan 1.2

 3.12 3.12 TLangManStrings = class (TStringList)TLangManStrings = class (TStringList)
Unit: LangManComp;
TLangManStrings class serves for an easy dynamic translation of objects
derived from the TStrings class – from various lists to the entire extensive
text files, visual components TMemo, TRichEdit etc. In the moment when
you enter in the program for example a log into a component TMemo and
you want this statement, created at runtime ,to be translated into the selected
language after the change of a language, TlangManStrings will take care of
it instead of you.

 3.12.1 3.12.1 TLangManStrings ConstructorTLangManStrings Constructor

 3.12.1.1 3.12.1.1 Constructor Create(ControlledStrings: TStrings; Lexicon:Constructor Create(ControlledStrings: TStrings; Lexicon:
TLexicon);TLexicon);
When creating an object of the TLangManStrings class, it is necessary to
transfer the following in the constructor parameters:
In ControlledStrings an object derived from TStrings must be transferred. It
is supposed to be managed by the new object – from a functional point of
view it the replacement of the original object by the newly created object. The
original object, of course, still exists, but it only serves for the output of the
translated text in the selected language, while the new object only operates
with the links to the lexicon strings.
In the Lexicon parameter a lexicon must be transferred. The strings of this
lexicon are supposed to be used for the texts translation.
From the moment of calling this constructor the text content of the original
object of the type of TStrings should be in the program treated only by
means of this object, which is derived from the TStringList class, and is
therefore also the TStrings class descendant.
Its methods Add, AddObject, Insert, InsertObject, Delete, Clear,
Exchange, Sort, CustomSort have the same function and the same effect
on the original object as if it were the methods of the object itself.

 3.12.2 3.12.2 TLangManStrings MethodsTLangManStrings Methods

 3.12.2.1 3.12.2.1 Procedure Translate;Procedure Translate;
This procedure will translate the entire text in the managed object, derived
from TStrings, which was when creating the TLangManStrings object by
means of Create constructor transferred in the ControlledStrings
parameter. This procedure does not start automatically when changing the
lexicon language. You must call this procedure in the right place of the
program yourself. In most cases it is sufficient to insert calling of this
procedure into the subprogram of the OnChangeLanguage event.

HW & SW Development www.regulace.org 24/29

LangMan 1.2

 4 4 Language files as application resources Language files as application resources
Since the 1.1 version LangMan components language files can be a part of
an executable EXE file of an application. Below I will describe how to do it in
Delphi 2009.
In the menu Project / Resources... open a dialog box for editing the
resources, that are supposed to be independently of the program of the
application linked to the resulting EXE file.

Use the Add button to insert a valid language file and in the field Resource
Identifier enter your own name to the added language. Choose this name
aptly if possible and realize that in case of editing the internal language by
the user, this language will be exported from the EXE file to the disk under
the same name and with a extension assigned according to
LangFileExtension property of the relevant language engine. Keep the
Resource Type on RCData.
Once you click on OK, and create the program (Build) all selected language
files will be linked to EXE file of your application in the described manner.
During every other program creating the actual content of language files will
be used, so you do not have worry about the constant importing of language
files after every change.
Nothing changes on the manner of creating and modifying the language files.
You can use the built-in language editor LangMan at any time and you can
rely on the fact that during the following compilation every change will be
introduced into the new EXE file.
Now it is still necessary to order to the relevant language engine
(TLangManEngine) into the LangResources property which internal
languages from the resources are supposed to be loaded. After opening the

HW & SW Development www.regulace.org 25/29

Obr. 4.1: Dialog for resources administration

LangMan 1.2

LangResources in object inspector, the String List Editor will be displayed.
On the individual lines now enter the names of internal language files
(Resource Identifier) that you assigned in dialog box Resources to
individual language files.

 5 5 Dynamic generating of texts Dynamic generating of texts
If your program generates a statement, a log file, etc. at runtime, it can insert
into the file relevant strings from the lexicon, which lists them in the currently
selected language. However, this approach has one weakness. After the
following language change, the existing content of the statement stays in the
original language, while the continuing statement will be in the changed
language. Under normal circumstances, there is no reasons for the user to
select a different language than the one selected in the beginning and the
most suitable one. There are some cases when the change of a language is
desirable at runtime of the program, and it is even desirable to change the
language of the the entire statement from the beginning not only for the
following part following.
For these cases, a new class TLangManStrings and visual component
TLangManRichEdit has been created and into the lexicons the method
CompleteString and Link property has been added.

Example:
If you have in your application an inserted visual component TMemo, into
which the program generates some statement at runtime, and you need the
language of the entire statement to be possible to be changed at any time,
use the TLangManStrings class. The procedure is as follows:
In the routine of the method of the OnCreate event of the form you will
create an object for instance Memo:

Memo := TLangManStrings.Create(Memo1.Lines, MainLexicon);

where Memo1 is the visual component TMemo, and MainLexicon is a
language lexicon (TDesignedLexicon or TProgrammableLexicon), which
contains all the necessary language strings for the dynamic generation of
your statement.
This step can be regarded as a replacement of Memo1.Lines property by a
new object Memo. So from this moment on you must change all the text
content of Lines property solely by means of the new object Memo of
TlangManStrings class! Any manipulation of the strings in the Memo1.Lines
property will be done solely by means of the object Memo, and it will be done
in the very same way as if you were working directly with Memo1.Lines. For
example, a new line will be inserted as follows:
Memo.Add('Text of a new line');

The result will be adding of the string 'Text of a new line' on a new line of

HW & SW Development www.regulace.org 26/29

LangMan 1.2

the Memo1.Lines property.
Now we come to creating a text translatable by MainLexicon lexicon, which
was in the Memo object constructor transferred as the second parameter. So
for example if there is a string 'My Text' (current language is the English) on
the item with index 2 of the lexicon MainLexicon, you could insert the string
directly in the following way:

Memo.Add(MainLexicon.Item[2]);

The effect would be the same as in this case:

Memo.Add('My Text');

The only advantage would be that the just inserted string would be in the
currently selected language. In the moment, when the user changed the
language of the relevant engine, the inserted text would stay unchanged and
in Czech.
However, if you insert the string by means of the the link (Link):

Memo.Add(MainLexicon.Link[2]);

in the given moment in the Memo1 component the same text would be on
the line as in previous example, but with the difference that, if the user
changed the language, the text on the last line of Memo1.Lines would be
automatically transferred into the newly selected language.
In the same way as the method Add work without any difference from the
original methods of the TStrings class also other methods such as
AddObject, Insert, InsertObject, Delete, Clear, Exchange, Sort and
CustomSort of the TlangManStrings class. It is only necessary to pay
attention to the fact that the resulting assigning of indexes to strings of the
Lines property of the TMemo component may differ from the object of
TLangManStrings class. For example, if you have in the component TMemo
set an automatic line wrap, the number of lines may increase by the number
of wrapping compared to the number of lines in TLangManStrings. This is
one more important reason why to follow the rule to approach the original text
of the object only by means of the compensatory object TLangManStrings.
The reward is a very impressive on-time independent possibility of changing
the language of extensive TStrings texts and again, as it is usual in case of
LangMan components, without any demands for programmer's time.
Otherwise, he would have to use much more complicated and laborious way
to achieve the same result.
Before closing the program, remember to release the memory assigned to
the Memo object by means of the method Free:

Memo.Free;

HW & SW Development www.regulace.org 27/29

LangMan 1.2

Document RevisionDocument Revision
Datum
Date

Revize
Revision

Poznámka
Note

11.2.2012 05 LangMan 1.2.1 Version Release
24.1.2012 04 LangMan 1.2.0 Version Release
15.4.2011 03 LangMan 1.1.8 Version Release
15.8.2010 02 LangMan 1.1.1 Version Release
17.2.2010 01 LangMan 1.1.0 Version Release

HW & SW Development www.regulace.org 28/29

LangMan 1.2

Information About the ProducerInformation About the Producer

Ing. Tomáš Halabala – REGULACE.ORG
Slunná 848, Luhačovice
CZ-76326
Czech Republic

Tel.: +420 728 677 659
E-mail: info@regulace.org
Web: http://www.regulace.org

HW & SW Development www.regulace.org 29/29

